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Abstract
Overfeeding caused by the inaccurate estimation of energy might be one of the most
important reasons leading to unsatisfactory outcomes of nutritional support, especially
for Parental Nutrition (PN). The current method of determining calorie needs by energy
expenditure (EE), either measured by indirect calorimetry (IC) or equations, might not
accurately represent the actual energy requirements of critically ill patients, especially
in the acute phase. Nutrition protocols based on the measurement of time might not be
effective. Research on the real-time metabolic status and the actual energy requirements
of the patients, as well as more individualized nutrition therapy, is required. Central
regulation, especially those involving hypothalamic pathways, is an effective solution
for the current dilemma.
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1. Background

Nutritional support is crucial for critically ill patients. De-
spite considerable advances in the past decades, the effect of
nutritional support is still unsatisfactory. Since studies have
provided inconsistent results, nutritional support in critically
ill patients has been controversial. The well-known clinical
guidelines for the nutritional support of critically ill patients,
for example, the Canadian Critical Care Nutrition Guidelines,
the ASPEN/SCCM guidelines 2016, and the ESPEN guide-
lines on EEN 2017, sometimes made contradictory recommen-
dations, which led to some open debates [1–3]. McClave et al.
[4] reported that only 51.6% and 63.5% of critically ill patients
who received enteral nutrition (EN) could reach the calorie
target [4, 5]. Malnutrition is one of the most important causes
of prolonged hospitalization and poor long-term prognosis
in critically ill patients [6–8]. Hence, new approaches are
urgently required to accurately determine nutritional support
for critically ill patients and improve the effectiveness of nutri-
tional support. In this review, we discussed two major issues,
including calorie needs and metabolism in the acute phase.
Also, we focused on individualized nutritional therapy, as well
as new solutions and what should be considered in the future
research of nutritional support during critical illness, especially
in the acute phase.

1.1 Does energy expenditure represent
actual calorie needs?
Recently, the previous views regarding calorie needs in the
acute phase of critical illness were challenged. Most clinical
guidelines and trials use energy expenditure (EE) to determine

calorie needs in critically ill patients. Many large clinical
trials that involved feeding below the actual EE showed similar
outcomes compared to the provision of full energy require-
ments during the first few days in the ICU [9–11]. The EDEN
trial compared trophic feeding (15–25% of calorie target) with
full enteral feeding for the first six days in participants with
acute lung injury, who required mechanical ventilation. The
results for the ventilator-free days, 60-day mortality, and in-
fectious complications were similar between the two feeding
modes [10]. The PermiT trial compared permissive under-
feeding (40% to 60% of calculated caloric requirements) or
standard feeding (70% to 100%) for up to 14 days in critical
adult patients and showed no difference for the 90-day mor-
tality between the two groups [11]. Permissive underfeeding
to approximately 15 kcal/kg with full protein nutrition support
might be acceptable in the early stages of critical illness [12].
Recently, observational studies found that feeding 70% of the
measured EE was optimum in terms of mortality [13]. As a
follow-up to the EPaNIC study, Hermans et al. [14] studied the
density and thickness of muscle fiber in the low-dose and the
high-dose EN groups and found no difference. Additionally,
in the ESPEN guidelines for EEN in critically ill patients,
12 RCTs (662 patients) on EEN versus delayed nutritional
intake were analyzed. The results suggested no advantage of
EEN over delayed nutritional intake in reducingmortality [15].
These results indicated that patients in the acute phase might
not require as much energy as we expect.

The calorie needs of critically ill patients may differ from the
estimated resting or total EE. The amplitude of EE variations
depends on several factors, including the presence of injury
or sepsis (type, severity, and metabolic response of the host)
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[16], the time course of the disease or the time spent in ICU
[17, 18], the current care and treatment provided [19], the
nutritional status or the fat-free mass [20], the complications
and factors related to the original disease, etc. [21, 22].
This variability contributes to the difficulty in estimating the
energy needs for the nutritional support of these patients.
The 2016 ASPEN/SCCM guidelines recommended that in-
direct calorimetry (IC) should be used to determine energy
requirements when available and when there are no variables
that affect measurement accuracy. Additionally, a published
predictive equation or a simplistic weight-based equation (25–
30 kcal/kg/d) should be used in the absence of IC [23]. Pre-
dictive equations could be one of the causes of underfeeding
or overfeeding some critically ill patients [24]. However, we
argue that the EE method to determine calorie requirements
has many limitations and could be the main factor leading to
overfeeding. Metabolism includes catabolism and anabolism.
The energy expenditure measured by IC mainly represents
catabolism [25]. Anabolism is the process of biosynthesis,
i.e., it represents the amount of energy the host needs to
synthesize proteins, carbohydrates, lipids, etc. [26]. Hence,
anabolism should also be considered while determining calorie
requirements. Additionally, the classic viewpoint considers
that caloric needs equal energy expenditure (EE). Thus, the
“appropriate” caloric intake is defined as the amount of energy
required for the basal metabolism of the body [27]. The caloric
needs generally imply the difference between the EE and the
level of endogenous calories produced, while caloric debt is the
difference between the EE and the caloric intake [28]. Hence,
the caloric demands cannot be deducted from the determination
of EE alone, as the production of endogenous calories is not
quantified. Therefore, during the first few days after the onset
of critical illness, the risk of overfeeding is probably higher
because the endogenous non-inhibitable production of calories
(mainly endogenous glucose production) matches 50–75% of
the EE [29]. In the late or chronic phase, when endogenous
caloric production is low and might be negligible, assessing
the EE can help to determine the maximum caloric intake [28].

Higher EE (measured by IC) indicates higher catabolism,
accompanied by lower anabolism. In this case, exogenous
nutrients cannot be used, leading to redundant metabolic bur-
dens to the host. According to Casaer and Rabinowitz, feeding
in the early phase of critical illness might not be necessary
as the patient is highly stressed; improper nutritional therapy
could activate autophagy and cause adverse outcomes [30, 31].
Therefore, if calorie intake is determined based on the EE
and the energy catabolism is ignored, it may lead to excessive
intake of nutrients, which might cause additional metabolic
problems in critical patients, especially in the acute phase.
Thus, critical patients should be provided lesser nutrients than
the EE in the acute phase. In the first 2–3 days, trophic nutrition
should be provided. If this mode of feeding is tolerated after
48–72 h, the energy intake can be gradually increased to>80%
of the target energy in the late or recovery phase. IC would
be suitable for measuring energy intake. Bedside 13C/12C
breath carbon ratio mass spectroscopy might be promising in
the future [32, 33].

1.2 EN vs. PN, which is better?
EN was shown to be better than PN in several studies. The
advantages of EN include maintaining the integrity of the
intestinal mucosal barrier, immunoregulation, modulation of
stress, promoting gastrointestinal motility, etc. [34, 35]. On
the other hand, the adverse events associated with PN include
a higher nosocomial infection rate [36]. Thus, in critically ill
patients who require nutrition support therapy, EN is preferred
to PN.
However, different opinions have emerged in recent years.

In the CALORIES trial, within 36 h of admission to ICU, ini-
tiation of early EN or early PN did not affect 30-day mortality
[37]. Participants in the EPN trial received either early PN
or standard nutrition therapy, with no significant differences
observed either in 60-day mortality or the length of ICU stay.
However, coagulation biomarkers and the duration of ventila-
tion showed better results in the EPNgroup [38]. Asmentioned
in the ESPEN guidelines on EEN, data from seven RCTs with
2686 patients were analyzed in a meta-analysis. The results
showed that EEN had similar mortality compared to early PN
[15]. A more recent meta-analysis also could not determine
whether EN is better (or worse) than PN at 90 days and 180
days, as well as, on ventilator-free days and during adverse
events [39]. An updated systemic and meta-analysis including
18 RCTs with 3347 patients showed no difference in the total
mortality between the groups receiving EN or PN, although
EN, compared to PN, showed significantly lower infectious
complications [40]. These results challenged the idea that EN
is preferred to PN for critical patients. Most studies showing
advantages of EN over PN have used different equations to
calculate full energy needs, but these equations have been
shown to lead to overfeeding [41]. Studies comparing early
PN in both children and adults have shown negative results
with early supplemental PN (SPN). These studies aimed to
meet full equation-based energy targets during the first two
days in critical patients [30, 42]. In the most recent trial where
EN and PN were provided at a similar rate, the hypothesis
of PN being the only reason for mortality and infection was
not confirmed in the CALORIES trial [37]. The patients who
received PN were more likely to reach the calorie target than
those who received EN. In the EDEN trial, patients in the
full feeding group only met 70% of the energy targets, while
in the CALORIES trial, more patients in the early PN group
reached the calorie target than those in the EN group [10, 37].
Thus, overfeeding in the early stage (more likely achieved by
PN as compared to EN), and not the use of PN, accounts for
the negative results [43]. EN has more advantages than PN
in the case of small dose/nourishing dose. While addressing
full energy requirements (most of the time, excessive), the
advantages of EN over PN are weakened or even abolished.
Regarding the nutrition substrates and the calories provided,
there might be no difference between PN and EN.

1.3 EN provides more than nutrition and
protection
Asmentioned above, patients receiving parenteral nutrition are
more likely to meet the energy demand than enteral nutrition.
However, a large number of experiments have shown that en-
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teral nutrition is better and indispensable. Many international
guidelines and expert opinions suggest that the enteral route is
the first choice in critically ill patients without EN contraindi-
cations [44–47]. Thus, enteral nutrition may not only provide
nutrition and protection to the intestinal mucosa but also stim-
ulate the production of gastrointestinal hormones through food
to provide feedback to the central nervous system, such as
the hypothalamic melanocortin system [48, 49]. The central
nervous system (CNS) receives peripheral correlational sig-
nals, which are capable of regulating personal energy balance
through metabolic, neural, and endocrine signals. Ingested nu-
trients are in contact with multiple parts of the gastrointestinal
tract, potentially altering peptides and nerve signals [50]. The
intestine releases several peptides during feeding that affect the
hypothalamic pathways engaged in the modulation of satiety
and metabolism. Within the hypothalamus, there are compli-
cated relationships among nuclei, of which, the arcuate nucleus
is one of the most vital hypothalamic centers for regulating
food intake. The neuropeptides in the hypothalamus involved
in the regulation of food intake also play a pivotal role in
the regulation of glucose metabolism and energy expenditure.
Additionally, gastrointestinal hormones also impact glucose
metabolism and energy expenditure [51–53].

1.4 Managing metabolic disorders in the
acute phase of critical illness
Recent evidence suggests that accounting for endogenous en-
ergy production and metabolic changes in early critically ill
patients is essential for making nutritional decisions [54, 55].
In the acute phase of critical illness, exogenous nutrients pro-
vided by either EN or PN might have little or no effect on
metabolic alterations, especially on anabolism, leading to an-
abolism resistance [26]. Anabolism resistance is the result
of several metabolic changes associated with an increase in
protein breakdown, glucose and lipid metabolic disorders, a
decrease in liver synthetic functions, etc. [56]. Besides
suffering from anabolism resistance, critically ill patients also
suffer from hypercatabolism in the acute phase. Anabolism
resistance and hypercatabolism reduce the effectiveness of nu-
tritional support [57]. Thus, interventions to correct metabolic
disorders might be an effective management strategy for the
problem associated with nutritional support in critical illness.
Metabolic disorders, including excessive catabolism and

anabolic resistance, are a systemic pathological response rather
than a local change, which prompts people to believe that
central regulation must play an important role in its patho-
genesis. Among all the metabolic disorders, high protein
catabolism and muscle wasting are considered to be the most
important factors related to morbidity and mortality [57]. In
the last few years, we focused on studying the mechanism
of hypercatabolism, especially muscle wasting, in critically
ill patients and determining some possible solutions. Our
previous studies suggested that central regulation, especially
involving the hypothalamic arcuate nucleus (ARC), might play
an important role in septic muscle wasting in animal mod-
els [58]. ARC is composed of two populations of neurons,
POMC and AgRP neurons [59]. POMC expresses anorexi-
genic peptides, POMC and CART, resulting in negative energy

balance, while AgRP expresses ingestive peptides, NPY, and
AgRP, resulting in positive energy balance [60]. First, we
showed that the expression of certain hypothalamic neuropep-
tides (e.g., POMC, CART, and AgRP) were closely asso-
ciated with muscle wasting (measured by 3-Methylhistidine
and tyrosine, mRNA expression of MuRF and MAFbx genes)
in septic animal models [61]. Additionally, we found that
the iKKβ/NF-κB inflammation pathway and the AMPK au-
tophagy pathway might be involved in the central regulation
of septic metabolic disorders [57, 62, 63]. Then, we showed
that the administration of dexmedetomidine and hypothermia
could alleviate muscle wasting by regulating the expression of
certain hypothalamic neuropeptides in septic animal models
[64, 65]. Although these results are based on animal models,
these effects could also be relevant in critically ill patients.
Our results and hypothesis support the rationale that future
studies on hypercatabolism in critical illness should investigate
central regulation, which might provide some new strategies
to improve the effect of nutritional support on critically ill
patients.

1.5 Individualized nutritional support
strategy: the future direction
Recent guidelines recommend the use of supplemental PN after
7–10 days for patients at low or high risk of nutrition which
cannot meet >60% of their energy and protein requirements
by the enteral route alone. Starting supplemental PN in some
critically ill patients on EN before these 7–10 days does not
improve outcomes and may be detrimental to the patient [23].
Making nutritional decisions based on the “one size fits all”
approach for critically ill patients using time as the only deter-
minant is no longer considered appropriate. First, due to the
differences in body mass, complexity, rapid changes during
illness, and different stress response levels, each critically ill
patient could have different metabolic requirements over time
[66, 67]. Thus, recommending the initiation of PN or EN
based solely on time since admission, while disregarding the
current metabolic status, may not be accurate. Second, for
most critical illnesses, the acute phase lasts for about 7–10
days [26]. Then, metabolic disorders might start to recover
gradually, with a decrease in catabolism and an increase in
anabolism [45]. This may explain why most existing clinical
trials making protocols based on the number of days showed
positive results. However, a duration of 7–10 days does not
cover the acute phase for all critically ill patients. Thus,
initiating nutritional interventions only based on time should
be abandoned.
Generally, there are two major problems in nutritional sup-

port for critical patients in the acute phase. The first prob-
lem involves correcting metabolic disorders, including hy-
percatabolism and anabolism resistance. The second prob-
lem involves searching for sensitive anabolism biomarkers
to determine energy requirements for critically ill patients.
The current method to determine calorie requirements by EE,
either measured by IC or through equations, mainly represents
catabolism rather than anabolism. Most of the critical patients
suffer from high catabolism and low anabolism in the acute
phase. Thus, the calorie requirements determined by EE do
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not represent the actual energy requirements of the patients.
Instead, a shift of focus on the metabolic status and actual

energy requirement of each patient is more likely to improve
the nutritional support strategies in critically ill patients. Indi-
vidualized nutritional therapy requires assessment of the real-
time metabolic status and the actual energy requirements. This
can help to make better decisions on nutritional support in
critically ill patients. Ideally, accurate monitoring of metabolic
responses should direct nutritional therapy, including decisions
regarding the time to start feeding and the proper calorie target
[43]. Unfortunately, such monitoring techniques are currently
unavailable. A primary factor restricting optimal management
is the inability to measure the dynamics of the glucose, pro-
tein, and lipid turnover at the bedside of an individual patient
[34]. Having such monitoring tools would enable precise
nutritional and metabolic therapy to reverse hypercatabolism
and anabolism resistance.

2. Conclusions

Overfeeding caused by the inaccurate estimation of energy
might be one of the most important reasons for unsatisfactory
outcomes of nutritional support, especially for PN. The current
method of determining calorie requirements by EE, either
measured by IC or through equations, might not accurately
represent the actual energy requirements of critically ill pa-
tients, especially in the acute phase. It is not recommended to
make nutrition protocols based on the measurement of time.
Focus on the real-time metabolic status and actual energy
requirements of the patients, as well as more individualized nu-
trition therapy, should be considered in future studies. Central
regulation, especially involving the hypothalamic pathways,
might be one of the most effective solutions for the current
problem.
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